跳至主要內容
LATS: 将语言模型中的推理、行动和规划统一起来

LATS: 将语言模型中的推理、行动和规划统一起来

LATS是一种利用大型语言模型(LLMs)进行决策的框架,它将LLMs作为代理、价值函数和优化器,以增强决策能力。LATS采用蒙特卡罗树搜索作为模型,利用外部反馈的环境提供更加灵活和适应性的问题解决机制。LATS在HumanEval上使用GPT-4实现了94.4%的编程得分,在WebShop上使用GPT-3.5实现了平均得分75.9。


猞猁-zlj大约 8 分钟大模型推理推理LLMCoTToT强化学习
THOR:思维链激励下的隐式情绪推理

THOR:思维链激励下的隐式情绪推理

本文介绍利用思维链方法来链式推理出隐式情感的方法,在 Zero-shot 设定下提升 50% F1 值。


猞猁-zlj大约 7 分钟大模型推理推理LLMCoTToTGoT
Graph-of-Thought: 思维图

Graph-of-Thought: 思维图

用图的推理能力来设计 prompt,思维图能助力 LLM 解决更复杂的任务。近日,一个研究团队提出了更进一步的想法:思维图(GoT)。让思维从链到树到图,为 LLM 构建推理过程的能力不断得到提升,研究者也通过实验证明了这一点。他们也发布了自己实现的 GoT 框架。


猞猁-zlj大约 9 分钟大模型推理推理LLMCoTToTGoT
Tree-of-Thought: 思维树

Tree-of-Thought: 思维树

该文介绍了 Tree-of-Thought: 思维树 框架,由普林斯顿和谷歌DeepMind联合提出的全新「思维树」框架,让GPT-4可以自己提案、评估和决策,推理能力最高可提升1750%。


lx大约 6 分钟大模型推理推理LLMCoTToT