跳至主要內容
LATS: 将语言模型中的推理、行动和规划统一起来

LATS: 将语言模型中的推理、行动和规划统一起来

LATS是一种利用大型语言模型(LLMs)进行决策的框架,它将LLMs作为代理、价值函数和优化器,以增强决策能力。LATS采用蒙特卡罗树搜索作为模型,利用外部反馈的环境提供更加灵活和适应性的问题解决机制。LATS在HumanEval上使用GPT-4实现了94.4%的编程得分,在WebShop上使用GPT-3.5实现了平均得分75.9。


猞猁-zlj大约 8 分钟大模型推理推理LLMCoTToT强化学习
XoT: 强化学习增强思维生成

XoT: 强化学习增强思维生成

该文介绍了一种名为XOT的提示技术,它增强了像GPT-3和GPT-4这样的大型语言模型(llm)解决复杂问题的潜力。


猞猁-zlj大约 4 分钟大模型推理推理LLMCoT强化学习
THOR:思维链激励下的隐式情绪推理

THOR:思维链激励下的隐式情绪推理

本文介绍利用思维链方法来链式推理出隐式情感的方法,在 Zero-shot 设定下提升 50% F1 值。


猞猁-zlj大约 7 分钟大模型推理推理LLMCoTToTGoT
Graph-of-Thought: 思维图

Graph-of-Thought: 思维图

用图的推理能力来设计 prompt,思维图能助力 LLM 解决更复杂的任务。近日,一个研究团队提出了更进一步的想法:思维图(GoT)。让思维从链到树到图,为 LLM 构建推理过程的能力不断得到提升,研究者也通过实验证明了这一点。他们也发布了自己实现的 GoT 框架。


猞猁-zlj大约 9 分钟大模型推理推理LLMCoTToTGoT
探究GPT-4到底有没有推理能力?

今年三月,OpenAI重磅发布了GPT-4大模型,带来了比GPT-3.5更强的推理、计算、逻辑能力。然而8月7日Konstantine Arkoudas撰写了一篇标题为GPT-4 Can't Reason的预印本论文,在业界引起轩然大波。该论文得出结论:尽管GPT-4偶尔会闪现出分析的才华,但它目前是完全无法推理的。而另一篇来自UCLA和华盛顿大学的研究也发现,GPT-4在大学的数学、物理、化学任务的推理上,表现不佳。


猞猁-zlj大约 13 分钟大模型推理GPT-4推理OpenAI
Chain-of-Thought: 思维链

Chain-of-Thought: 思维链

该文介绍了 Chain-of-Thought: 思维链 框架,结合 in-context, few-shot prompting 以及多步中间推理,通过大模型来改善数学计算、常识推理的效果。


lx大约 3 分钟大模型推理推理LLMCoT
Tree-of-Thought: 思维树

Tree-of-Thought: 思维树

该文介绍了 Tree-of-Thought: 思维树 框架,由普林斯顿和谷歌DeepMind联合提出的全新「思维树」框架,让GPT-4可以自己提案、评估和决策,推理能力最高可提升1750%。


lx大约 6 分钟大模型推理推理LLMCoTToT